Sheet 1

First Order Ordinary Differential Equations

1) Use Euler's method to solve $\frac{d y}{d x}=3 x^{2}+1, \quad y(1)=2$. Take step size $=0.5$ and estimate $\mathrm{y}(2)$.
2) Solve the equation $\frac{d y}{d x}=x+y, y(0)=1$ by Euler's method. Taking step size $=0.2$ and 0.4 , find $\mathrm{y}(1)$. Compute error in both cases. Compare the results with exact solution $\left(y=2 e^{x}-x-1\right)$.
3) If water is drained from a vertical cylindrical tank by opening a valve at the base, the water will flow fast when the tank is full and slow down as it continues to drain. As turns out, the rate at which the water level drops is:

$$
\frac{d h}{d t}=\theta .2 \sqrt{h}
$$

The depth of the water, h, is measured in meter and the time, t, in minute. Determine the depth after 5 minutes if the fluid level is initially 9 m . Solve by applying Euler's method use a step of 2.5 minute.
4) The current I in a circuit having a resistance R and inductance L is given by the differential equation as $\frac{\mathrm{dI}}{\mathrm{dt}}=\frac{\mathrm{E} \sin (\Omega \mathrm{t})-\mathrm{RC}}{\mathrm{L}}$ where $\mathrm{E}=100 \mathrm{~V}, \mathrm{~L}=1.5 \mathrm{H}, \Omega=500, \mathrm{C}=$ 1 and $\mathrm{R}=90$ Ohm. Initially, $\mathrm{I}=0$ at $\mathrm{t}=0$. By the use of a midpoint method find $\mathrm{I}(0.2)$ taking time step $=0.1 \mathrm{sec}$, .
5) Use midpoint method to solve $\frac{d y}{d x}=\frac{2 y}{x}, y(1)=2$. Take step size $=0.5$ and estimate $\mathrm{y}(2)$.
6) A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K . Assuming heat is lost only by natural convection with constant-temperature surroundings, the differential equation describing (approximately) the rate of change of temperature T of a ball is given by
$\frac{d T}{d t}=-0.016(T-300)$
Use the midpoint method to find the temperature at $\mathrm{t}=20$ seconds. Assume a step size of $h=5$ seconds

> 1 - السؤ ال الاول والرابع محلولين حل نموذجى
> 2 - السؤال الثانى والخامس سيتم شرحهم فى السكشن
> 3 - السؤ ال الثالث و السادس سيحلهم الطالب ويقدمهم فى نقرير منظم فى المو عد الذى سيحدده المعيد
> 4 - فـى حالة تققيم التقر ير بعد المو عد المحدد فلن يقبل منه مهما كانت الاعذار و ولن تو ضم له در جة

1 - Given
$f(x, y)=3 x^{2}+1$
$x_{0}=1$
$y_{0}=2$
$x_{f}=2$
$h=0.5$
Solution
y_{1}
$x_{1}=x_{0}+h=1+0.5=1.5$
$y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)=2+0.5 * f(1,2)=4$
y_{2}
$x_{2}=x_{1}+h=1.5+0.5=2$
$y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right)=4+0.5 * f(1.5,4)=7.875$
y_{3}
$x_{3}=x_{2}+h=2+0.5=2.5$
$y_{3}=y_{2}+h f\left(x_{2}, y_{2}\right)=7.875+0.5 * f(2,7.875)=14.375$
y_{4}
$x_{4}=x_{3}+h=2.5+0.5=3$
$y_{4}=y_{3}+h f\left(x_{3}, y_{3}\right)=14.375+0.5 * f(2.5,14.375)=24.250$

x	y
1	2
1.5	4
2	7.875
2.5	14.375
3	24.250

4-
$\frac{\mathrm{dI}}{\mathrm{dt}}=\frac{\mathrm{E} \sin (\Omega \mathrm{t})-\mathrm{RC}}{\mathrm{L}}$
substituting constants gives
$\frac{\mathrm{dI}}{\mathrm{dt}}=(100 \sin (500 \mathrm{t})-90) / 1.5$
let $y=I$ and $x=t$ then
$\frac{d y}{d x}=(100 \sin (500 x)-90) / 1.5, \quad y(0)=0$
Given
$f(x, y)=\frac{100 \sin (500 x)-90}{1.5}$
$x_{0}=0$
$y_{0}=0$
$x_{f}=0.2$
$h=0.1$
Solution
y_{1}
$x_{1}=x_{0}+h=0+0.1=0.1$
$x_{m}=x_{0}+\frac{h}{2}=0+\frac{0.1}{2}=0.05$
$y_{m}=y_{0}+h \frac{f\left(x_{0}, y_{0}\right)}{2}=0+0.1 * \frac{f(0,0)}{2}=-3$
$y_{1}=y_{0}+h f\left(x_{m}, y_{m}\right)=0+0.1 * f(0.05,-3)=-6.882$
y_{2}
$x_{2}=x_{1}+h=0.1+0.1=0.2$
$x_{m}=x_{1}+\frac{h}{2}=0.1+\frac{0.1}{2}=0.15$
$y_{m}=y_{1}+h \frac{f\left(x_{1}, y_{1}\right)}{2}=-6.882+0.1 * \frac{f(0.1,-6.882)}{2}=-10.757$
$y_{2}=y_{1}+h f\left(x_{m}, y_{m}\right)=-6.882+0.1 * f(0.15,-10.757)=-15.468$

t	I
0.000	0.000
0.100	-6.882
0.200	-15.468

